Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Neurotoxicology ; 97: 101-108, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20232294

ABSTRACT

Anxiety-related disorders are among the most important risks for global health, especially in recent years due to the COVID-19 pandemic. Benzodiazepines like diazepam are generally used to treat anxiety disorders, but the overall outcome is not always satisfactory. This is why psychiatrists encourage patients with anxiety to change their lifestyle habits to decrease the risk of anxiety recurrence. However, the effect of diazepam and exercise in combination is unknown. This study aimed to investigate the effect of diazepam alone or in combination with swimming exercise on lipopolysaccharide (LPS)-induced anxiety-like behavior and oxidative stress in the hippocampus and prefrontal cortex of mice. Mice were exposed to diazepam and swimming exercise alone or in combination with each other and then received LPS. We assessed anxiety-like behavior using open field and light-dark box and measured oxidative markers including glutathione (GSH), malondialdehyde (MDA), and glutathione disulfide (GSSG) in the hippocampus and prefrontal cortex. The findings showed that LPS increased anxiety-related symptoms and oxidative stress by decreasing GSH and increasing MDA and GSSG levels in the prefrontal cortex but not in the hippocampus. Although diazepam alone did not reduce anxiety-like behavior and oxidative stress, it in combination with exercise significantly decreased anxiety-like behavior and oxidative stress in the prefrontal cortex of LPS-treated mice. This drug and exercise combination also displayed a more effective effect in comparison with exercise alone. Overall, this study suggests that diazepam in combination with swimming exercise has higher efficacy on anxiety-like behavior and oxidative stress than when they are used alone.


Subject(s)
COVID-19 , Lipopolysaccharides , Mice , Animals , Humans , Lipopolysaccharides/toxicity , Glutathione Disulfide , Diazepam/pharmacology , Pandemics , Oxidative Stress , Anxiety/chemically induced , Anxiety/prevention & control , Prefrontal Cortex , Glutathione/metabolism , Hippocampus
2.
Mol Biol Rep ; 50(7): 5827-5836, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20230640

ABSTRACT

BACKGROUND: Oxidative stress is thought to play a significant role in the pathogenesis and severity of COVID-19. Additionally, angiotensin converting enzyme 2 (ACE2) expression may predict the severity and clinical course of COVID-19. Accordingly, the aim of the present study was to evaluate the association of oxidative stress and ACE2 expression with the clinical severity in patients with COVID-19. METHODS AND RESULTS: The present study comprised 40 patients with COVID-19 and 40 matched healthy controls, recruited between September 2021 and March 2022. ACE 2 expression levels were measured using Hera plus SYBR Green qPCR kits with GAPDH used as an internal control. Serum melatonin (MLT) levels, serum malondialdehyde (MDA) levels, and total antioxidant capacity (TAC) were estimated using ELISA. The correlations between the levels of the studied markers and clinical indicators of disease severity were evaluated. Significantly, lower expression of ACE2 was observed in COVID-19 patients compared to controls. Patients with COVID-19 had lower serum levels of TAC and MLT but higher serum levels of MDA compared to normal controls. Serum MDA levels were correlated with diastolic blood pressure (DBP), Glasgow coma scale (GCS) scores, and serum potassium levels. Serum MLT levels were positively correlated with DBP, mean arterial pressure (MAP), respiratory rate, and serum potassium levels. TAC was correlated with GCS, mean platelet volume, and serum creatinine levels. Serum MLT levels were significantly lower in patients treated with remdesivir and inotropes. Receiver operating characteristic curve analysis demonstrates that all markers had utility in discriminating COVID-19 patients from healthy controls. CONCLUSIONS: Increased oxidative stress and increased ACE2 expression were correlated with disease severity and poor outcomes in hospitalized patients with COVID-19 in the present study. Melatonin supplementation may provide a utility as an adjuvant therapy in decreasing disease severity and death in COVID-19 patients.


Subject(s)
COVID-19 , Melatonin , Humans , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antioxidants/metabolism , COVID-19/genetics , Gene Expression , Oxidative Stress/genetics , Patient Acuity , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism
3.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: covidwho-2304262

ABSTRACT

In addition to the acute symptoms after infection, patients and society are also being challenged by the long-term effects of COVID-19, known as long COVID. Oxidative stress, as a pivotal point in the pathophysiology of COVID-19, could potentially be also involved in the development of the post-COVID syndrome. The aim of the present study was to evaluate the relationship between changes in oxidative status and the persistence of long-COVID symptoms in workers with a previous mild COVID-19 infection. A cross-sectional study was conducted among 127 employees of an Italian university (80 with a previous COVID-19 infection, and 47 healthy subjects). The TBARS assay was used to detect malondialdehyde serum levels (MDA), while total hydroperoxide (TH) production was measured by a d-ROMs kit. A significant difference in mean serum MDA values was found between previously infected subjects and healthy controls and (4.9 µm vs. 2.8 µm, respectively). Receiver-operating characteristic (ROC) curves showed high specificity and good sensibility (78.7% and 67.5%, respectively) for MDA serum levels. A random forest classifier identified the hematocrit value, MDA serum levels, and IgG titer against SARS-CoV-2 as features with the highest predictive value in distinguishing 34 long-COVID from 46 asymptomatic post-COVID subjects. Oxidative damage persists in subjects with previous COVID-19 infection, suggesting a possible role of oxidative stress mediators in the pathogenesis of long COVID.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Cross-Sectional Studies , Oxidative Stress/physiology , Italy/epidemiology
4.
Saudi J Biol Sci ; 30(4): 103603, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2252842

ABSTRACT

Background: The aging process and a chronic sedentary lifestyle in the elderly as a result of physical restrictions during the COVID-19 pandemic, induces oxidative stress through oxygen supply and antioxidant activity imbalance which in turn induce degenerative diseases. Salat dhuha as a prayer and mind-body medicine which is practiced by the Muslim community can hopefully be a solution to decrease oxidative stress in the elderly. Objective: To evaluate the acute physiological effects of salat dhuha on Glutathione Peroxidase activity (GPx) as an antioxidant and Malondialdehyde (MDA) as an oxidant in healthy elderly Muslim women population who have done salat dhuha regularly. Method: A randomized controlled study was done on elderly women (aged 60-74 years old) who are treated in the North Sumatra Government's Nursing Home in Binjai and who routinely do 2 rakaat of salat dhuha every day. Several physical, clinical, and blood examinations were done pre and post-intervention. 101 elderly Muslim women in the nursing home were selected, 26 met the study criteria and were included in the study. The volunteers were randomized into 2 groups using lottery papers, the "2-rakaat salat dhuha group" (n = 13) and the "8-rakaat salat dhuha group" (n = 13). All volunteers did salat dhuha for at least 5 days per week for 6 weeks. Result: 24 elderly women completed the study, and one volunteer from each group dropped out. The characteristics of participants from both groups were homogenous. Results of the t-independent analysis showed that MDA concentrations in both groups in the pre and post-test were not significantly different (p > 0,05). Mann Whitney analysis showed that GPx on both groups in the pre and post-test were not significantly different (p > 0,05). Paired sample t-test analysis on the MDA concentrations pre and post-test in the 8-rakaat group showed a significant difference in MDA levels (p < 0,05). The 8-rakaat salat dhuha group showed that GPx activity increases as much as 8,9% and MDA levels decrease as much as 48,35 % after 6 weeks. Conclusion: Salat dhuha promotes redox homeostasis and has the potential to prevent oxidative stress in elderly women.

5.
Alcohol Clin Exp Res ; 2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2273294

ABSTRACT

BACKGROUND: Over 43% of the world's population regularly consumes alcohol. Although not commonly known, alcohol can have a significant impact on the respiratory environment. Living in the time of the COVID-19 pandemic, alcohol misuse can have a particularly deleterious effect on SARS-CoV-2-infected individuals and, in turn, the overall healthcare system. Patients with alcohol use disorders have higher odds of COVID-19-associated hospitalization and mortality. Even though the detrimental role of alcohol on COVID-19 outcomes has been established, the underlying mechanisms are yet to be fully understood. Alcohol misuse has been shown to induce oxidative damage in the lungs through the production of reactive aldehydes such as malondialdehyde and acetaldehyde (MAA). MAA can then form adducts with proteins, altering their structure and function. One such protein is surfactant protein D (SPD), which plays an important role in innate immunity against pathogens. METHODS AND RESULTS: In this study, we examined whether MAA adduction of SPD (SPD-MAA) attenuates the ability of SPD to bind SARS-CoV-2 spike protein, reversing SPD-mediated virus neutralization. Using ELISA, we show that SPD-MAA is unable to competitively bind spike protein and prevent ACE2 receptor binding. Similarly, SPD-MAA fails to inhibit entry of wild-type SARS-CoV-2 virus into Calu-3 cells, a lung epithelial cell line, as well as ciliated primary human bronchial epithelial cells isolated from healthy individuals. CONCLUSIONS: Overall, MAA adduction of SPD, a consequence of alcohol overconsumption, represents one mechanism of compromised lung innate defense against SARS-CoV-2, highlighting a possible mechanism underlying COVID-19 severity and related mortality in patients who misuse alcohol.

6.
Asian Journal of Medical Sciences ; 13(11):3-10, 2022.
Article in English | Academic Search Complete | ID: covidwho-2113197

ABSTRACT

Background: Coronavirus disease-19 (COVID-19) has sparked the deterioration of human health at an unprecedented scale globally and affected the patient's musculoskeletal health also. It is conceivable that active rheumatoid arthritis (ARA) patients recovered from COVID-19 after second wave are at enhanced risk of cardiovascular complications. Aim and Objectives: In this context, the present study was intended to estimate the soluble vascular cell adhesion molecule-1 (sVCAM-1), serum paraoxonase (PON), and markers of oxi-inflammatory stress in ARA patients diagnosed reverse transcriptase-polymerase chain reaction negative after second wave of COVID-19 and to determine their role in predicting cardiovascular disease (CVD) risk. Materials and Methods: Sixty ARA patients (30-45 years) of Delhi-NCR region were recruited and categorized into two groups (n=30 in each group;on the basis of their history of COVID infection). Using standard methods, study group parameters were estimated in ARA patients and statistically compared it with that of 30 healthy controls by using student's t-test. Results: Serum sVCAM-1, malondialdehyde (MDA), and C-reactive protein (CRP) levels were significantly high (P<0.001) in Group II and Group III subjects as compared to healthy controls. Conversely, serum PON activity was found to be significantly low (P<0.001) in Group III as compared healthy controls. However, PON activity was altered insignificantly (P<0.1) with respect to Group II subjects. sVCAM-1 levels were positively correlated with MDA, CRP, and atherogenic index;and negatively correlated with PON activity (P<0.001) in post-COVID ARA patients. Conclusion: Thus, enhanced sVCAM-1 and reduced PON activity along with enhanced oxi-inflammatory stress status are more efficient molecular signatures of CVD risk among post-COVID ARA patients. Therefore, the present study emphasizes the dire need of special attention to provide cardiovascular rehabilitation strategy among post-COVID ARA patients along with reduction of oxi-inflammatory stress to reduce the CVD mortality in ARA population. [ FROM AUTHOR]

7.
Journal of Pharmaceutical Negative Results ; 13:555-561, 2022.
Article in English | Web of Science | ID: covidwho-2111710

ABSTRACT

Background: Despite several scientific efforts against COVID 19, conundrum of biomolecular deterioration in Post COVID syndrome patients are still in dark at an unprecedented scale globally and affected the patient's health multidimensionally. It is conceivable that patients recovered from COVID-19 after second wave are at enhanced risk of secondary complications.Aim: The present study was carried out to estimate the serum vitamin D and total antioxidant activity (TAC) along with markers of oxi-inflammatory stress in post COVID patients diagnosed RT-PCR negative after second wave of COVID-19 and to determine their role in predicting secondary complications.Methodology: 50 subjects (30-55 years) of Delhi-NCR region were recruited and categorized into two groups (n=25 in each group;on the basis of their history of COVID infection). By using standard methods, study group parameters were estimated in Post COVID patients and statistically compared it with that of 25 non affected healthy controls by using student's t-test.Result: Serum CRP, TNF-alpha, MDA and uric acid levels were significantly high (p<0.05) in Post COVID patients as compared to healthy controls. Conversely, serum vitamin D and TAC levels along with SOD activities were found to be significantly low (P<0.001) in Post COVID patients as compared healthy controls. However, ceruloplasmin level was altered insignificantly (p<0.1) with respect to Group I subjects. Vitamin D levels were positively correlated with TAC and SOD activity (P<0.001) and negatively correlated with MDA, CRP, TNF-alpha and uric acid levels in post COVID patients.Conclusion: Therefore, the present study emphasizes the dire need of special attention to Post COVID population by providing vitamin D supplementation, antioxidant and mineral rich diet along with adoption of regular aerobic exercise not only to rejuvenate the biomolecular homeostasis but also to reduce oxi-inflammatory stress mediated future complications.

8.
Int J Mol Sci ; 23(17)2022 Sep 03.
Article in English | MEDLINE | ID: covidwho-2010113

ABSTRACT

Oxidative stress induced by neutrophils and hypoxia in COVID-19 pneumonia leads to albumin modification. This may result in elevated levels of advanced oxidation protein products (AOPPs) and advanced lipoxidation end-products (ALEs) that trigger oxidative bursts of neutrophils and thus participate in cytokine storms, accelerating endothelial lung cell injury, leading to respiratory distress. In this study, sixty-six hospitalized COVID-19 patients with respiratory symptoms were studied. AOPPs-HSA was produced in vitro by treating human serum albumin (HSA) with chloramine T. The interaction of malondialdehyde with HSA was studied using time-resolved fluorescence spectroscopy. The findings revealed a significantly elevated level of AOPPs in COVID-19 pneumonia patients on admission to the hospital and one week later as long as they were in the acute phase of infection when compared with values recorded for the same patients 6- and 12-months post-infection. Significant negative correlations of albumin and positive correlations of AOPPs with, e.g., procalcitonin, D-dimers, lactate dehydrogenase, aspartate transaminase, and radiological scores of computed tomography (HRCT), were observed. The AOPPs/albumin ratio was found to be strongly correlated with D-dimers. We suggest that oxidized albumin could be involved in COVID-19 pathophysiology. Some possible clinical consequences of the modification of albumin are also discussed.


Subject(s)
Advanced Oxidation Protein Products , COVID-19 , Advanced Oxidation Protein Products/metabolism , Albumins/metabolism , Humans , Oxidation-Reduction , Oxidative Stress
9.
Yakut Medical Journal ; - (1):83-86, 2022.
Article in Russian | Web of Science | ID: covidwho-1856615

ABSTRACT

The relationship of lipid peroxidation with sleep disturbance, anxiety and depression in Yakutsk residents who recovered from COVID-19 was studied. It has been established that oxidative stress in COVID-19 due to an increase in the level of ROS in the body can lead to hypoxia and psycho-emotional disorders such as anxiety and depression.

10.
Food Chem X ; 14: 100302, 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1796842

ABSTRACT

Kombucha, originated in China 2000  years ago, is a sour and sweet-tasted drink, prepared traditionally through fermentation of black tea. During the fermentation of kombucha, consisting of mainly acidic compounds, microorganisms, and a tiny amount of alcohol, a biofilm called SCOBY forms. The bacteria in kombucha has been generally identified as Acetobacteraceae. Kombucha is a noteworthy source of B complex vitamins, polyphenols, and organic acids (mainly acetic acid). Nowadays, kombucha is tended to be prepared with some other plant species, which, therefore, lead to variations in its composition. Pre-clinical studies conducted on kombucha revealed that it has desired bioactivities such as antimicrobial, antioxidant, hepatoprotective, anti-hypercholestorelomic, anticancer, anti-inflammatory, etc. Only a few clinical studies have been also reported. In the current review, we aimed to overhaul pre-clinical bioactivities reported on kombucha as well as its brief compositional chemistry. The literature data indicate that kombucha has valuable biological effects on human health.

11.
Phytomed Plus ; 2(3): 100280, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1796221

ABSTRACT

Background: The presence of diabetes mellitus (DM) among COVID-19 patients is associated with increased hospitalization, morbidity, and mortality. Evidence has shown that hyperglycemia potentiates SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection and plays a central role in severe COVID-19 and diabetes comorbidity. In this review, we explore the therapeutic potentials of herbal medications and natural products in the management of COVID-19 and DM comorbidity and the challenges associated with the preexisting or concurrent use of these substances. Methods: Research papers that were published from January 2016 to December 2021 were retrieved from PubMed, ScienceDirect, and Google Scholar databases. Papers reporting clinical evidence of antidiabetic activities and any available evidence of the anti-COVID-19 potential of ten selected natural products were retrieved and analyzed for discussion in this review. Results: A total of 548 papers (73 clinical trials on the antidiabetic activities of the selected natural products and 475 research and review articles on their anti-COVID-19 potential) were retrieved from the literature search for further analysis. A total of 517 articles (reviews and less relevant research papers) were excluded. A cumulative sum of thirty-one (31) research papers (20 clinical trials and 10 others) met the criteria and have been discussed in this review. Conclusion: The findings of this review suggest that phenolic compounds are the most promising phytochemicals in the management of COVID-19 and DM comorbidity. Curcumin and propolis have shown substantial evidence against COVID-19 and DM in humans and are thus, considered the best potential therapeutic options.

SELECTION OF CITATIONS
SEARCH DETAIL